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Robust Framework of Single-Frame Face
Superresolution Across Head Pose, Facial
Expression, and Illumination Variations

Xiang Ma, Huansheng Song, and Xueming Qian, Member, IEEE

Abstract—This paper presents a robust framework to solve the
face hallucination problem across multiple factors, i.e., different
expressions, head poses, and illuminations. It proposes a redun-
dant transformation with diagonal loading for modeling the map-
pings among different new face factors, and a local reconstruction
with geometry and position constraints for incorporating image de-
tails in the new factor spaces. Our proposed redundant and sparse
strategies are discussed, and the experiments indicate that it is not
necessary to adopt sparse representation in the proposed frame-
work. The experimental results demonstrate that the proposed
framework offers robustness when dealing with the inputs that
have different expressions, head poses, and illuminations compared
with the state-of-the-art methods, can generate high-resolution face
images with better image qualities than the hierarchical tensor-
based method, and improves the state of the art from single one
output to multiple outputs with new factors.

Index Terms—face hallucination, Face superresolution, super-
resolution.

I. INTRODUCTION

FACE images are the only biometric information available
in some legacy databases and can be acquired even with-

out the subjects’ cooperation. Unlike traditional access control
scenarios, where facial images are taken under controlled illu-
mination, head pose, and expression, images in other domains
suffer from uncontrolled illumination, large pose variation, a
range of facial expressions, make-up, and severe partial occlu-
sions. The goal of superresolution is to recover one or multiple
high-resolution (HR) images from low-resolution (LR) image
sequences or a single LR one [1].

The problem can be stated as that of recovering an HR image
x, from its LR version y. We model the relation between these
two by

y = SHx = Lx (1)
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where H is a linear filter that models certain low-pass filtering
(blurring, e.g., with a Gaussian kernel), S is a down-sampling
operator, and L = SH . The dimension of y is significantly
smaller than that of x; thus there are infinitely many possible
vectors x that satisfy the above equation. To obtain a unique and
“good” HR image, proper regularization is needed by imposing
certain priors on the solution.

The approach to generate an HR image from multiple LR im-
ages is called multiple-frame superresolution [2]. The approach
to generate an HR image from a single LR observation with a
set of training images is called single-frame superresolution [3].
Superresolution can also be classified into general superreso-
lution and domain specific superresolution, for example, face
superresolution, according to the type of applied LR images.

Single-frame face superresolution based on training sets, also
known as face hallucination, is attractive for numerous appli-
cations including visual surveillance and security, social net-
working websites. Baker et al. [4] coined the term “face hal-
lucination” and developed a face hallucination method using
a Bayesian formulation. Liu et al. [5] presented a two-step
approach integrating a global parametric model with Gaus-
sian assumption and a local nonparametric model based on
Markov random fields. Inspired by locally linear embedding,
a well-known manifold learning method, Chang et al. [6] de-
veloped neighbor embedding based on the assumption that the
LR and HR training images form manifolds with similar local
geometry in two distinct feature spaces. Following [5], the au-
thors in [7]–[11] treat face hallucination as a two-step problem.
Ma et al. [12] proposed a fast local one-step method, in which
patch position in the face image is used as well as image features
to synthesize an HR face image. Yang et al. [27] applied sparse
representation to superresolution by training all atoms to con-
struct only a single dictionary. Ma et al. [1] classified all atoms
to small dictionaries according to the different regions of human
face and obtained better results. Zhang and Cham [34] propose
a learning-based face hallucination method in the discrete co-
sine transform. Hu et al. [35] used the input LR face and the
learned pixel structures as priors to estimate the target HR face.
An approach based on similarity constraints is proposed by Li
et al. [36]. The authors in [7]–[11] and [35] only performed on
the inner facial parts. These algorithms fail to synthesize hair,
and facial contour lines, not important for face recognition, but
important for face superresolution.

Most face hallucination methods are limited to a frontal face
without consideration of illumination, head pose, and expres-
sion variations. Some methods such as in [12] consider face
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Fig. 1. State-of-the-art methods only generate a single output with the same
factor of LR input.

variations, but they are limited in that both the HR output and
LR input have the same view (see Fig. 1). Thus, they cannot
generate an HR front face from a profile face, which is impor-
tant for identification or recognition. In real-world applications,
it is essential to generate HR outputs with new factors from an
LR input, e.g., to obtain the HR frontal face with normal illu-
mination from an LR profile face with nonnormal illumination.

The face images in surveillance videos are normally LR and
nonfrontal with diverse expressions and illuminations. It is es-
sential to obtain the corresponding HR face from the LR face
at multiple factors (different expressions, head poses, and il-
luminations) in a video. However, most of the state-of-the-art
face hallucination methods fail to do it. Our current proposed
framework addresses this issue (see Fig. 2).

We next briefly review the methods with consideration of
different poses, expressions, and illuminations in face super-
resolution or face recognition system. Li and Lin [19] used a
texture model [37] and Gabor wavelet features to synthesize
the corresponding frontal face. Many ideas of generating new
face views have been reported in face recognition systems, e.g.,
the 2-D technique based on active appearance models [13], and
the technique based on complicated 3-D face morphable model
[14], [15], etc. Tian and Fan [16] adopted a tensor [17], [18]
framework with manifold learning to explore the relationship
between multiview faces. The authors in [16] adopted tensor
[17], [18] framework with manifold learning to explore the rela-
tionship between multiview faces. Vetter [39] separated texture
and shape of the face and used a 3-D model to produce a new
view. Chai et al. [20] used locally linear regression for pose-
invariance. These face transformation methods require face fea-
tures or face shape from face image input. Because it is nearly
impossible to obtain face features, or an accurate shape in an LR
face, e.g., the size of 16 × 12, they cannot work on an LR face
image and, thus, cannot be used for superresolution. Other face
transformation methods (see, e.g., [13]–[16], and [39]) cannot
construct hair, ears, or facial contour lines successfully. While
some have addressed the expression and illumination problem
[20]–[23], these techniques are also only applied to HR face
images and cannot be used for superresolution.

Jia and Gong [24]–[26] presented a generalized approach
based on a hierarchical tensor for hallucinating HR face images

across multiple factors, achieving generalization to variations
in expression, pose, and illuminations. However, a tensor is
a general extension of traditional linear methods [26]. A 2-D
tensor is a matrix singular value decomposition, which is sim-
ilar to principal component analysis (PCA). The algorithm of
PCA eliminates nonfeature information and keeps feature infor-
mation. Superresolution aims to incorporate image details and
requires information not be lost during the processing. However,
the principal component is kept and nonfeature information is
abandoned in the hierarchical tensor framework. Nonfeature in-
formation is important to superresolution, because facial detail
should be recovered. Sparse representation takes much com-
putation time to select only a small number of training atoms
for obtaining image details, and most training atoms that con-
tain certain information are not used. Therefore, the tensor and
sparse representation models have problems being adopted for
superresolution.

Almost all state-of-the-art face hallucination methods fail to
generate HR outputs with new factors from an LR input, e.g.,
fail to obtain the HR frontal face with normal illumination from
an LR nonfrontal face with nonnormal illumination. This paper
presents a framework that can produce multiple HR faces with
new factors from a single given LR input and is robust to LR
inputs with multiple illuminations, poses, and expressions.

The rest of this paper is organized as follows. Section II
describes the proposed framework. Section II-A presents the
methods for face reconstruction in the same resolution space.
Section II-B presents the methods for face transformation of
multiple factors in the same resolution space. Section II-C
presents face transform of multiple factors in LR space.
Section II-D presents local patch-based method for incorpo-
rating face details. Section III presents an evaluation, and
Section IV concludes this paper.

II. PROPOSED FRAMEWORK

A. Redundant Linear Combination for Face Reconstruction in
the Same Resolution Space

Face images can be synthesized from the linear combination
of training samples because of structural similarity [7]. We first
find that faces of different poses, illumination, and expressions
can also be reconstructed from redundant linear combination of
other samples with small error (see Fig. 3).

A face image is represented as a column vector of all pixel
values. Let I denote a face of a certain factor. We have

I ∼= w1L1 + w2L2 + · · · + wN LN =
N∑

i=1

wiLi (2)

where L1 , L2 , . . . ,LN are the training faces at the same factor
with I; N is the maximum number of the training faces at a
certain factor; and w1 , w2 , . . . ,wN are the construction coeffi-
cients. Every wi indicates the contribution of Li to reconstruct
the input face I .

Equation (2) can be rewritten as

I ∼= WL = Ĩ . (3)
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Fig. 2. Proposed framework can generate multiple outputs with new factors

Fig. 3. Redundant linear combination of faces at different factors.

The reconstruction error θ is measured between the face input
and the redundant linear combination of training samples:

θ = ‖I − WL‖2 =
∥∥∥I − Ĩ

∥∥∥
2
. (4)

We assume that if the reconstruction is successful, the distance
is very small. The optimal weights W are obtained with the
constraint of minimization of θ. Let all coefficients w sum to
one. We have

W = arg min
w 1 ,w 2 ,...,wN

θ. (5)

It is a constrained least squares problem that can be obtained
using the steps in [28]

wn =

(
N∑

k=1

C−1
nk

) /(
N∑

l=1

N∑

m=1

C−1
lm

)
(6)

where l and m are integers, C is the local covariance matrix,
and Cik = (I − Li)T (I − Lk ).

For a given face at a certain factor, it can be reconstructed
using the coefficients obtained above in the same resolution
space with some acceptable errors. Fig. 4 shows that the image
I can be generated as Ĩ using redundant reconstruction. A set
of redundant reconstruction weights is also shown in Fig. 4(c).

A given face at a certain factor can be reconstructed using the
coefficients obtained above in the same resolution space with
some acceptable errors. Some results are given in Fig. 4, which
show that the imageI can be generated as Ĩ using redundant
reconstruction. A set of redundant reconstruction weights is
given in Fig. 4(c).

In practice, the solution to obtain W may not be unique, and
one approach is to impose several regularization terms. Sparse
representation theory can be used to obtain W. It is converted to
a standard sparse representation problem:

min
w

‖W‖1 subject to ‖I − L · W‖2
2 ≤ θ (7)

where || • ||1 denotes the �1-norm. This sparsity constraint can
ensure that the underdetermined equation has an exact solution
to obtain W.

Some representative results are given in Fig. 5. The pro-
posed redundant representation has better image quality over
the proposed sparse representation. The solution to (7) requires
large computational resources. Even if both methods have the
same image qualities, redundant representation is still superior.
Therefore, the sparse representation strategy is unnecessary.
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Fig. 4. Face redundant reconstruction. (a) Input. (b) Reconstruction result. (c) Redundant reconstruction weights.

B. Generating New Factors in the Same Resolution Space

Most of the methods for multiple factors transformation are
limited to HR images with a single factor (see, e.g., [20] and
[39]). These methods require obtaining face features, or face
shape from face image input. Because it is nearly impossible
to obtain face features, or an accurate shape in an LR face
(e.g., the size of 16 × 12 pixels) they cannot be used for super-
resolution. Other face transformation methods (see, e.g. [13]–
[16], and [39]) cannot address hair, ears, or facial contour lines.
Some methods addresses the expression and illumination prob-
lem [21]–[23], but these techniques are also only applied to HR
face images and cannot be used for superresolution. We propose
a new method which is applicable to LR images.

Let the term o denote multiple factors. Suppose that Ip is
an input face of factor p, and Io is its corresponding faces of
factor o. The following produces Io from Ip in the same resolu-
tion space. The training faces of factor p are represented as L1

p ,
L2

p , . . . ,LN
p , whose same resolution correspondences at factor

o are L1
o , L2

o , . . . , LN
o .

From (2)–(6), we have

Ip
∼= WpL

n
p (8)

Wp = arg min
wn

∥∥Ip − WpL
n
p

∥∥2
. s. t.

N∑

n=1

wn
P = 1 (9)

Io
∼= WoL

n
o (10)

Wo = arg min
wn

‖Io − WoL
n
o ‖2 . s. t.

N∑

n=1

wn
o = 1. (11)

In (9), Wp can be obtained using (6) because Ip and Ln
p are

known:

wn
P =

(
N∑

k=1

(Cnk )−1

)/(
N∑

l=1

N∑

m=1

(Clm )−1

)
(12)

where l and m are integers, C is the local covariance matrix,
and Cik = (IP − Li

p)
T (IP − Lk

p ). If Wo are determined, Io

can be obtained. However, Io and Wo are unknown in (10). We
assume that there exists an approximate linear mapping between
redundant linear combination of faces at factors o and p. We use
weights Wp of factor p to generate Ĩo as follows:

Ĩo = WpL
n
o (13)

where Ĩo is close to Io . Equation (13) shows that Ĩo is the linear
combination of the training face images of factor o; therefore,
it should be face-like of factor o (see Fig. 3). Therefore, face Ip

is transformed from one factorp to multiple factors o.
It is not known how humans identify the relation between two

different factors of images [29]. In order to reduce the error, we
improve upon (12). Wp will be adjusted to make its variance
small so that Ĩo has more general characteristics of factor o. A
compensation matrix is diagonal loaded to the local covariance
matrix C:

C = C + λD (14)

where λ is a constant, and D is an N × N identity and diagonal
matrix. The value of λ is determined empirically.

Since the resolution of 16 × 12 pixels is small, we use
a resolution of 64 × 48 to illustrate the superiority of the
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Fig. 5. Face reconstruction in the same resolution space. (a) Input. (b) Proposed redundant linear combination. (c) Proposed sparse linear combination.
(d) Redundant weights. (e) Sparse weights.

loading diagonal matrix. The effect of diagonal loading is shown
in Fig. 6. The results with and without the loading diagonal ma-
trix appear in Fig. 6(c); the results have been improved with
diagonal loading and the image quality is improved when the
value of λ increases. However, when λ exceeds a certain value,
the individual ingredient of the reconstructed face decreases, and
the universal ingredient increases to the average face of factor o.
We hope that the results maintain both the general characteris-
tics of factor o and specific characteristics of input and we must
balance them. Fig. 6(k) provides the relationship between λ and
PNSR values of the results. The value of λ between 800 000 and
1 600 000 are optimal. When the resolution of LR face input is
16 × 12, the best values of λ are between 50 000 to 100 000.

We compared our method with the redundant and sparse
strategies [Wp in (13) is calculated using (7)]. Representative
results of HR images appear in Fig. 7, which illustrate that face
transformations using the redundant strategy have better image
qualities than from the sparse method. Furthermore, the pro-
posed strategy of sparsity takes more computation time. Using
compressed sense theory, the exact solution to (7) (for sparsity)
is NP hard due to its nature as a combinatorial optimization

problem. Suboptimal solutions to this problem can be found by
iterative methods or for the design of dictionaries. Because the
iterative and dictionary generating steps are involved, it takes
much computation time to obtain sparse coefficients.

The computation of the sparse coefficients takes at least sev-
eral minutes using a PC with four cores 1.7-G CPU, and the
redundant coefficients method only takes several seconds. After
the coefficients are determined, the rest of computation takes
less than a minute despite all nonzero weights or sparse weights

Therefore, we choose the redundant strategy in our proposed
framework.

C. Step 1: Generating Multiple Factors
in Low-Resolution Space

We next present the proposed framework, which can produce
HR faces with new face factors. Our proposed robust frame-
work includes two steps: a global transformation with diagonal
loading for modeling the mappings among different new facial
factors, and a local position-patch based method with weights
compensation for incorporating image details. Because the
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Fig. 6. Effect of loading constant. (a) Input. (b) Ground truth image. (c) Without loading. (d) With loading λ = 5000. (e) λ = 800 000. (f) λ = 1 000 000. (g) λ =
1 500 000. (h) λ = 1 600 000. (i) λ = 2 500 000. (j) λ = 10 000 000. (k) Quantitative data.

Fig. 7. Face transformation. (a) Input. (b) Redundant. (c) Sparse. (d) Ground truth images.
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proposed framework can be used to different expressions, poses,
and illuminations, we call it a robust framework.

The proposed method of Section II-B is applied to the LR
space. Suppose that Ip is an LR face input of a single factor p.
We can use the method of Section II-B to generate corresponding
LR faces Ĩo in LR space.

D. Step 2: Local Patch-Based Method for Incorporating
Face Details

The LR face images Ĩo require a second step to obtain HR
correspondences of factor o. In this section, [12] is improved
to incorporate image details in the new factor spaces. All train-
ing HR face images Hn

o and the corresponding LR training
image Ln

o at factor o are respectively divided into {Ln
o (i, j)},

{Hn
o (i, j)}. The term (i, j) denotes the position information of

each patch. We improve upon [12] by defining the new geometry
constraint as follows:

Wo(i, j) = arg min
W n

o (i,j )
{ ‖ Ĩo(i, j) −

N∑

n=1

wn
o (i, j)Ln

o (i, j)‖2

+ λ

N∑

n=1

‖wn
o (i, j)Dnn (i, j)‖2 },

s. t.
N∑

n=1

wn
o (i, j) = 1 (15)

where Wo(i, j) is an N-dimensional weight vector of each recon-
struction weight Wn

o (i, j), for n = 1, 2, . . . , N; λ is a regulariza-
tion parameter balancing the contribution of the reconstruction
error and locality of the solution; and D is an N×N diagonal ma-
trix. The geometry difference Dnn (i, j) of each vector element
penalizes the distance between Ĩo(i, j) and the same position
training patches. The geometry difference is determined by the
squared Euclidean distance:

Dnn (i, j) =
∥∥∥Ĩo(i, j) − Ln

o (i, j)
∥∥∥

2
, 1 ≤ n ≤ N. (16)

Wo(i, j) can be solved by the following formulation [30]:

Wo(i, j) = 1/(C(i, j) + λD). (17)

Let

S = Ĩo(i, j) · GT − Lo (18)

where G is a column vector of ones, and Lo is a matrix with its
columns being the training patches Ln

o (i, j). The local covari-
ance matrix C can be obtained by

C = ST S. (19)

Once the reconstruction weights WO (i, j) are obtained, the
HR image patches H̃o(i, j) are generated as follows:

H̃o(i, j) =̃
N∑

n=1

Hn
o (i, j)Wn

o (i, j). (20)

All HR patches H̃o(i, j) are integrated to form the final global
HR image H̃o according to their original positions. Through the

Fig. 8. Comparison of generating image details. (a) Input LR image 32 × 24.
(b) Using redundant weights 128 × 96 [12]. (c) Using sparse weights 128 ×
96 [1].

above steps, the multiple HR faces H̃o are generated from a
single LR face Ip .

Redundant representation modeling of data provides nonzero
weights for all training atoms. Sparse representation model-
ing of data describes signals as linear combinations of only a
few atoms from a predefined dictionary. Thus, some informa-
tion is lost in sparse signal representation because the signal
is approximated with a smaller subset from the dictionary. In
addition, when selecting only a small number of training atoms
for obtaining image details, most of training atoms that contain
certain information are not used. We propose that redundant
reconstruction has superiority over sparse reconstruction in su-
perresolution, because the prior information from image train-
ing set should be used as much as possible to hallucinate facial
details.

Redundant weights are used in [12] to reconstruct the HR
patch and sparse weights in [1]. Fig. 8 illustrates that the method
using redundant weights yields higher quality and more details
than sparse weights. Because the solution for sparse weights has
a large computation cost, redundant representation is superior.

Jung et al. [31] replaced the redundant weights with the
sparse weights in [12]. In this paper, the same experiments
under the same experimental conditions were performed on the
same database. The experimental conditions from [31] were
replicated. The results are shown in Fig. 9.

Jung et al. [31] claimed that their method was more effec-
tive in preserving the edge and image details in the nose and
mouth areas than [12]. Fig. 9 shows that the two results are very
similar. The peak signal-to-noise ratio (PSNR) values of face
hallucination results appear in Fig. 10. Most PSNR values of
face hallucination results of [12] are higher than in [31]. The
experimental results [31] need to be questioned.

Therefore, it is not necessary to take the additional step for
sparse representation in step two of our framework.

III. EVALUATION

We evaluated our framework on public face databases: the
CAS-PEAL-R1 Face Database [38] for multiview simulated
experiments, the benchmark AR face database [32] for multi-
ple expressions, and the CMU PIE database [33] for multiple
illuminations. All experimental face images should be aligned
using an automatic tool or manually.
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Fig. 9. Face hallucination results. (a) Input 32 × 24 LR faces. (b) Results of [12]. (c) Results of [31]. (d) Original 128 × 96 faces.

Fig. 10. PSNR values of face hallucination results.

Fig. 11. Comparison of face transformation (CAS-PEAL-R1 database). (a) Input image with different poses and expressions. (b)–(e) Our method. (f)–(i) Jia’s
method [26]. (j)–(m) Ground truth image.
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Fig. 12. Multiple facial expression hallucination (AR database). (a) LR (16 × 12) input faces at a single expression. (b) Bicubic interpolation. (c)–(f) Face
transformation in LR space using our framework. (g)–(j) HR (64 × 48) results of our framework .(k)–(n).Ground truth face images.

Fig. 13. PSNR values of the hallucinated results of four different expressions from each test expression of ten individuals. (a) LR test inputs with neutral
expression. (b) LR test inputs are with smile expression. (c) LR test inputs with anger expression. (d) LR test inputs with scream expression.
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Fig. 14. Multiple facial illumination condition hallucination (CMU PIE database). (a) LR (16 × 12) input faces at a single illumination. (b) Bicubic interpolation.
(c)–(g) Face transformation of our method in LR space. (h)–(l) HR (64 × 48) results of our framework. (m)–(q) Ground truth face images.

Fig. 15. Multiview face hallucination (CAS-PEAL-R1 database). (a) LR (16× 12) input faces at single view. (b) Bicubic interpolation. (c)–(g) Face transformation
of our method. (h)–(l) HR (64 × 48) results of our method. (m)–(q) Ground truth face images.

A. Comparison of Global Transformation With Traditional
Hierarchical Tensor Framework

We compared face transformation of different poses and ex-
pressions with the method in [26] on the CAS-PEAL-R1 Face
Database [38], which contains 1350 face images of 270 differ-
ent individuals. Two hundred and fifty individuals were chosen
at random. Each individual has five different views and five
different expressions. We cut out the interesting region of the
faces and unified the images to the size of 64 × 48 pixels.
The 1250 images of 250 individuals were used as HR train-
ing images, and the rest of the images of the 20 individuals
were used as image inputs. Some input faces were transformed
from one pose to multiple poses, e.g., from nonfront to front,
and some were transformed from one expression to multiple
expressions. Representative results are shown in Fig. 11. The
average PSNR value for our method is 20.6 dB and for the
method in [26] is 18.1 dB. The proposed framework achieves

better image qualities and higher PSNR values than in [26].
Our method is superior than that in [26] with respect to face
transformation.

B. Multiple Facial Expression Hallucination

Our approach was applied to the AR face database [32] for
multiple facial expression hallucination. The original AR dataset
consists of 126 people, and for each individual, it includes im-
ages of different facial expressions, illumination conditions, and
occlusions. The setup was adopted from [26]. We obtained four
HR results with different expressions from every LR input. Rep-
resentative results are in Fig. 12. The PSNR values of the hal-
lucinated results are in Fig. 13. If the hallucinated results have
the same expression with LR inputs, they will obtain the highest
PSNR values compared with other expressions. Our method can
produce multiple HR faces with four expressions only given a
single LR face.
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Fig. 16. PSNR values of the hallucinated results of five different views from each test view of 20 individuals (better shown in electronic version). (a) LR test
inputs with front view. (b) LR test inputs with left view. (c) LR test inputs with down view. (d) LR test inputs with right view. (e) LR test inputs with up view.
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Fig. 17. Experimental results on real-world pictures. (a) Picture from the In-
ternet. (b) Multiview experiment. (c) Picture from a camera. (d) Multiexpression
experiment.

C. Multiple Facial Illumination Condition Hallucination

We also evaluated our approach on the CMU PIE database
[33] for multiple illumination hallucination. The database con-
tains 41 368 images obtained from 68 subjects. We chose the
frontal face images of all 68 individuals, in which each indi-
vidual has five different illumination conditions. We manually
aligned these face images and established a standard training
dataset and used the “leave-one-out” methodology to perform
the multiple facial illumination hallucination experiments. Rep-
resentative results are shown in Fig. 14. Our framework can be
applied to LR input with different illumination conditions.

D. Multiview Face Hallucination

Our multiview hallucination approach was evaluated on the
CAS-PEAL-R1 Face Database [38]. The 1250 images of 250
different individuals were used as HR training images, which
were smoothed and downsampled to 16 × 12 as LR training
images. The images of the remaining 20 individuals were also
smoothed and downsampled to 16 × 12 as LR image inputs.
The view of face input was called input view. For hallucination
of one view, we chose the HR face of target view and LR face of
input view from training set to build our training pairs. Finally,
we obtained the five facial view hallucinations for each test view
input. Representative results are shown in Fig. 15.

We can see that any hallucination of LR input with the same
view is always better than those with other views, which is due
to generating nonlinear variations across different facial views.

The performance was also quantified by evaluating PSNR
between the ground truth face images and the multiview hallu-
cinated images. The PSNR values from the hallucinated results
of multiple factors is given in Fig. 16.

The results with the same views of the inputs have relatively
higher values of PSNR than the others, which appear on the tops
of the wave in Fig. 16(a)–(d). The results with the distinct views
of the inputs have relatively lower values of PSNR than the oth-
ers, which appear on the bottoms of the wave in Fig. 16(a)–(d).
The computational time of our face transform method is around
60 s when working on a 16 × 12 LR face using a PC with four

cores, 1.7-G CPU, while the first step of [26] already about 300
seconds. Thus, our method has an advantage of efficiency.

E. Real-World Images

Two real-world images are used in our evaluation. We chose
the CAS-PEAL-R1 Face Database [38] as the training set. The
LR faces in Fig. 17(a) and (c) were aligned, extracted manually,
and standardized to the size of 16 × 12 as LR inputs. Multiple
facial expression hallucination and multiview face hallucination
experiments are conducted using the two pictures as inputs.
We show the results in Fig.17 (b) and (d). It shows that our
framework is applicable to the real-world pictures.

The image qualities are not as good as the results from the
standard face database. The reason for this is that the LR image
is from the real-world environment and contains noise. Because
sometimes we do not know anything about the LR input before-
hand in real-world applications, superresolution should ensure
all original information of the input is not lost. If we know
beforehand that the LR input has noise which is useless infor-
mation, we will remove the noise using a method before face
hallucination. Otherwise, we may remove useful information as
noise, e.g., a scar or other personal characteristics, which are
useful for recognition.

IV. CONCLUSION

Most face hallucination methods are limited to the frontal
face without consideration of illumination, head pose, and ex-
pression variations. A few methods consider face variations,
but they are limited in that the HR output and LR input have
the same view. In this paper, we proposed a robust framework
of face superresolution across multiple factors. Specifically, we
propose a redundant transformation with diagonal loading for
modeling the mappings among different new face factors, and a
local reconstruction with geometry and position constraints for
incorporating image details in the new factor spaces. While a
complex tensor model is traditionally used, the experiment re-
sults illustrate that our model is superior to the traditional hier-
archical tensor framework. Compared with the existing method,
our framework is effective with regard to the computational
cost. The comparison of our two proposed redundant and sparse
strategies are also discussed. It is not necessary to adopt sparse
representation in the proposed framework. The experimental re-
sults demonstrate that the proposed framework offers robustness
when dealing with the inputs that have different expressions,
head poses, and illuminations compared to the state-of-the-art
methods, can generate HR face images with better image quali-
ties than the hierarchical tensor based method, and improves the
state of the art from single one output to multiple outputs with
new factors.
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